MBMT Team Round - Germain

April 16, 2023

DO NOT BEGIN UNTIL YOU ARE INSTRUCTED TO DO SO.

This round consists of 15 questions. You will have 45 minutes to complete the round. Later questions are worth more points; point values are notated next to the problem statement. (There are a total of 100 points.) Please write your answers in the simplest possible form.

DO NOT TURN THE QUESTION SHEET IN!
 Use the official answer sheet.

You are highly encouraged to work with your teammates on the problems in order to solve them.

1 [4] There are 5 red balls and 3 blue balls in a bag. Alice randomly picks a ball out of the bag and then puts it back in the bag. Bob then randomly picks a ball out of the bag. What is the probability that Alice gets a red ball and Bob gets a blue ball, assuming each ball is equally likely to be chosen?

2 [4] A circle has radius 6. A smaller circle with the same center has radius 5. What is the probability that a dart randomly placed inside the outer circle is outside the inner circle?

3 [4] Alex and Jeff are playing against Max and Alan in a game of tractor with 2 standard decks of 52 cards. They take turns taking (and keeping) cards from the combined decks. At the end of the game, the 5 s are worth 5 points, the 10 s are worth 10 points, and the kings are worth 10 points. Given that a team needs 50 percent more points than the other to win, what is the minimal score Alan and Max need to win?

4 [5] Bob has a sandwich in the shape of a rectangular prism. It has side lengths 10, 5, and 5 . He cuts the sandwich along the two diagonals of a face, resulting in four pieces. What is the volume of the largest piece?

5 [5] Aven makes a rectangular fence of area 96 with side lengths x and y. John makes a larger rectangular fence of area 186 with side lengths $x+3$ and $y+3$. What is the value of $x+y$?

6 [5] A number is prime if it is only divisible by itself and 1 . What is the largest prime number n smaller than 1000 such that $n+2$ and $n-2$ are also prime? Note: 1 is not prime.

7 [6] Sally has 3 red socks, 1 green sock, 2 blue socks, and 4 purple socks. What is the probability she will choose a pair of matching socks when only choosing 2 socks without replacement?

8 [6] A triangle with vertices at $(0,0),(3,0),(0,6)$ is filled with as many 1×1 lattice squares as possible. How much of the triangle's area is not filled in by the squares?

9 [7] Let A and B be digits. If $125 A^{2}+B 161^{2}=11566946$ What is $A+B$?

10 [8] A series of concentric circles $w_{1}, w_{2}, w_{3}, \ldots$ satisfy that the radius of $w_{1}=1$ and the radius of $w_{n}=\frac{3}{4}$ times the radius of w_{n-1}. The regions enclosed in $w_{2 n-1}$ but not in $w_{2 n}$ are shaded for all integers $n>0$. What is the total area of the shaded regions?

11 [8] How many ordered pairs of integers (x, y) satisfy $y^{2}-x y+x=0$?

12 [9] 10 cards labeled 1 through 10 lie on a table. Kevin randomly takes 3 cards and Patrick randomly takes 2 of the remaining 7 cards. What is the probability that Kevin's largest card is smaller than Patrick's largest card, and that Kevin's second-largest card is smaller than Patrick's smallest card?

13 [9] N consecutive integers add to 27 . How many possible values are there for N ?

14 [10] A circle with center O and radius 7 is tangent to a pair of parallel lines l_{1} and l_{2}. Let a third line tangent to circle O intersect l_{1} and l_{2} at points A and B. If $A B=18$, find $O A+O B$.

15 [10] Let

$$
M=\prod_{i=0}^{42}\left(i^{2}-5\right)
$$

Given that 43 doesn't divide M, what is the remainder when M is divided by 43 ?

