1 Find the largest integer less than 2023 whose square ends in 9 .
Proposed by Michelle Gao.
Answer: 2017
Solution: Only numbers ending in 3 or 7 have squares ending in 9 . The largest such integer less than 2023 is 2017.

2 How many positive integers divide both 100 and 160?
Proposed by Joshua Hsieh.
Answer: 6
Solution: Any integer that divides both 100 and 160 divides their greatest common divisor, 20. There are 6 such numbers: $1,2,4,5,10,20$.

3 There exist positive integers a, b, c, with $b>1$, and $6 \cdot a=b \cdot c=12000$. If a and b are relatively prime, what is c ?

Proposed by Isabelle Yang.
Answer: 4000
Solution: We know that $a=\frac{12000}{6}=2000$. By prime factorizing 12000, we have that $120=2^{5} \cdot 3^{1} \cdot 5^{3}$ We also know that a is relatively prime to b , so b must be relatively prime with $2000=2^{4} \cdot 5^{3}$. Looking at the prime factors of 12000 , we see that the only way a factor of 12000 can be relatively prime to 2000 is if it is 3 or 1 . But $b>1$ so $b=3$. Thus, we get that $c=\frac{12000}{3}=4000$.
4 What is the largest integer n such that 3^{n} is a factor of $18!+19!+20$??

Proposed by Kian Dhawan.

Answer: 8
Solution: We first notice that each of the terms is divisible by 18! so we can factor it out. This gives us $18!+19!+20!=18!(1+19+19 \cdot 20)=18!\cdot(400) .400$ has no factors of 3 , so we just count the factors of 3 in 18!. There is 1 factor of 3 from $3,6,12,15$, and 2 factors of 3 from 9,18 . This adds to a total of 8 factors of 3 , thus the answer is 8 .

5 For some positive integer $1 \leq n \leq 1000$, Jeremy writes down n^{2}, n^{1}, and n^{0} in a row on his whiteboard, in that order. His friend Joshua, however, read the three integers as a single integer and deduced that it is a multiple of 3 . For how many n would this happen?

Proposed by Kelin Zhu.

Answer: 334
Solution: Notice that since $10^{k} \equiv 1(\bmod 3)$, the concatenation of n^{2}, n^{1}, n^{0} is equivalent to $n^{2}+n+1 \bmod 3$. Testing $n=0,1,2$ we find that this only works for $n \equiv 1$ $\bmod 3$. There are 334 possible solutions between 1 and 1000 .

6 Suppose we have positive integers that sum up to 200 . What is the largest possible product of the integers?

Proposed by Kevin Wu.
Answer: $2 \cdot 3^{66}$
Solution: Consider the optimal splitting of the integers. Clearly, there cannot be any integer in the split n such that $n \geq 5$, since by replacing n with $n-2,2$ we'd do better because

$$
n>4 \Longrightarrow 2 n-4>n \Longrightarrow 2(n-2)>n .
$$

Additionally, we can safely replace a 4 with two 2 s without changing the product.
However, notice that three 2s should be replaced by two 3 s , because $2^{3}<3^{2}$. Therefore the number of 2 s has to be less than three, so the only possibility is to have one 2 and 663 s , giving a product of $2 \cdot 3^{66}$.
7 Find the remainder when the sum of $x(x+1)(x+2)$ for all x ranging from $x=1$ to $x=39$ is divided by 40 .
Proposed by Bradley Guo.
Answer: 20
Solution: We know that the sum of $x(x+1)(x+2)$ from 1 to 39 is equivalent to the sum of $(x-1) x(x+1)=x^{3}-x$ from 2 to 40 . Since we're taking this sum modulo 40, we have that the sum is equivalent to the sum of $x^{3}-x$ from 1 to 39 , because $x^{3}-x \equiv 0 \bmod 40$ for $x=1,40$. We can pair the terms a and $40-a$ in the sum to get that $a^{3}+\left(40-a^{3}\right)-a-(40-a) \equiv 0 \bmod 40$. This leaves us with the only term that couldn't be paired: 20 . Our answer is $20^{3}-20 \equiv 20 \bmod 40$.
8 Find x, where x is the remainder when

$$
\prod_{k=1}^{n 0} k k^{2}
$$

is divided by 41 .
Proposed by Kevin Wu and Nathan Cho.
Answer: 40
Solution: The condition tells us that it may suffice to find two values of x that are additive inverses of each other. As 41 is a prime, this could occur when finding the solutions to an equation $a^{2}(\bmod 41)$. This motivates us to square our term. We wish to find

$$
\prod_{k=1}^{40} k!^{2} \quad(\bmod 41)
$$

Clearly, this is the same as

$$
\prod_{k=1}^{40}\left(k^{41-k}\right)^{2} \equiv \prod_{k=1}^{20}\left(k^{41} \cdot(-1)^{41-k}\right)^{2} \equiv \prod_{k=1}^{20} k^{82} \quad(\bmod 41)
$$

By Fermat's Little Theorem, we can see that $k^{82} \equiv k(\bmod p)$. Therefore, Hence, it follows that our answer is 40 .

