MBMT Number Theory Round - Germain

April 16, 2023

Full Name \qquad

Student ID Number

\qquad

DO NOT BEGIN UNTIL YOU ARE INSTRUCTED TO DO SO.

This round consists of 8 questions. You will have 30 minutes to complete the round. Each question is not worth the same number of points. Questions answered correctly by fewer competitors will be weighted more heavily. Please write your answers in a reasonably simplified form.

1 Find the largest integer less than 2023 whose square ends in 9 .

2 How many positive integers divide both 100 and 160?

3 There exist positive integers a, b, c, with $b>1$, and $6 \cdot a=b \cdot c=12000$. If a and b are relatively prime, what is c ?

4 What is the largest integer n such that 3^{n} is a factor of $18!+19!+20$??

5 For some positive integer $1 \leq n \leq 1000$, Jeremy writes down n^{2}, n^{1}, and n^{0} in a row on his whiteboard, in that order. His friend Joshua, however, read the three integers as a single integer and deduced that it is a multiple of 3 . For how many n would this happen?

6 Suppose we have positive integers that sum up to 200. What is the largest possible product of the integers?

7 Find the remainder when the sum of $x(x+1)(x+2)$ for all x ranging from $x=1$ to $x=39$ is divided by 40 .
\qquad 8 Find x, where x is the remainder when

$$
\prod_{k=1}^{40} k!^{2}
$$

is divided by 41 .

