1 An equilateral triangle and a square have the same perimeter. If the side length of the equilateral triangle is 8 , what is the square's side length?

Proposed by Evan Zhang.
Answer: 6
Solution: The perimeter of the triangle is $3 \cdot 8=24$. The perimeter of the square is also 24 so its side length must be $\frac{24}{4}=6$.
2 What is the maximum possible number of sides and diagonals of equal length in a quadrilateral?

Proposed by Bradley Guo.
Answer: 5
Solution: A rhombus with angles 60 and 120 degrees has 4 sides and 1 diagonal of equal length. A quadrilateral with all 4 sides and 2 diagonals of equal length is impossible because a rhombus with equal-length diagonals is a square, which has a diagonal that is longer than its side length.

3 Patrick is rafting directly across a river 20 meters across at a speed of $5 \mathrm{~m} / \mathrm{s}$. The river flows in a direction perpendicular to Patrick's direction at a rate of $12 \mathrm{~m} / \mathrm{s}$. When Patrick reaches the shore on the other end of the river, what is the total distance he has traveled?

Proposed by Kevin Yao.
Answer: 52
Solution: Every second, Patrick moves 5 meters towards the other side of the river, and 12 meters along the river. Thus, he travels 13 meters every second for 4 seconds, which gives a total distance of 52 .

4 Quadrilateral $A B C D$ has side lengths $A B=7, B C=15, C D=20$, and $D A=24$. It has a diagonal length of $B D=25$. Find the measure, in degrees, of the sum of angles $A B C$ and $A D C$.

Proposed by Kevin Yao.
Answer: 180
Solution: 7-24-25 and 15-20-25 are both Pythagorean triples, and so two of the angles are right angles. Since the sum of the internal angles of a quadrilateral is 360 , $m \angle A B C+m \angle A D C=360-180=180$.

5 What is the largest P such that any rectangle inscribed in an equilateral triangle of side length 1 has a perimeter of at least P ?

Proposed by Bradley Guo.
Answer: $\sqrt{3}$

Solution: Two corners of the rectangle must be on the same side of the triangle. Let the side length of the edge between the two corners be x. Then the other side length of the rectangle is $\frac{(1-x) \sqrt{3}}{2}$, and so the perimeter of the rectangle is $\sqrt{3}+(2-\sqrt{3}) x$. This is minimized at $x=0$ which gives an answer of $\sqrt{3}$.
6 A circle is inscribed in an equilateral triangle with side length s. Points A, B, C, D, E, F lie on the triangle such that line segments $A B, C D$, and $E F$ are parallel to a side of the triangle, and tangent to the circle. If the area of hexagon $A B C D E F=\frac{9 \sqrt{3}}{2}$, find s.

Proposed by Valerie Song.
Answer: $3 \sqrt{3}$
Solution: Consider hexagon $A B C F E F$. The sides of the equilateral triangle all make angles of 60° to each other, so the internal angles in the hexagon are all $180^{\circ}-60^{\circ}=120^{\circ}$.

We claim this hexagon is regular. To so this, we will prove all of its sides have the same length. L the center of the inscribed circle be I. We then examine an arbitrary pair of sides, say $A B$ and $B C$. We note that I is equidistant from $A B$ and $B C$, so it must lie on the angle bisector of $\angle A B C$. Therefore, $\angle A B I=\angle C B I=60^{\circ}$. Similarly, $\angle B A I=\angle B C I=60^{\circ}$, so $\triangle A B I$ and $\triangle B C I$ are equilateral, with sidelengths of $B I$. Thus, $A B=B I=B C$ so all pairs of adjacent sides are equal. This means all sides are equal, as desired.

Now, the area of a regular hexagon with sidelength s is $\frac{3 \sqrt{3}}{2} s^{2}$, so equating this to $\frac{9 \sqrt{3}}{2}$ gives $\sqrt{3}$. The sidelength of the larger triangle is triple this, which is $3 \sqrt{3}$.

7 Let $\triangle A B C$ be such that $\angle A=105^{\circ}, \angle B=45^{\circ}, \angle C=30^{\circ}$. Let M be the midpoint of A, C. What is $\angle M B C$?

Proposed by Kevin Wu.
Answer: 15°
Solution: Let E be the foot from A to $B C$. Then because $\triangle A E B$ is a $45-45-90$ triangle, then $B E=A E$. Additionally, because $\angle A E C$ is right and M is the midpoint of A, C, then $M A=M E=M C$, and since $A E C$ is a 30-60-90 triangle we also get $A E=A M$. Thus we get the equality $B E=A E=A M=M E=M C$.

Now, we can notice that $\triangle E M C$ is isosceles, so $\angle M E C=\angle M C E=30^{\circ}$. Finally, since $\triangle M E B$ is isosceles, then $\angle M B C=\angle M B E=\frac{\angle M E C}{2}=15^{\circ}$. Alternatively, because $A B=A E \sqrt{2}$, then we can see $\frac{A M}{A B}=\frac{1}{\sqrt{2}}=\frac{A B}{A C}$, then $\triangle A M B \sim \triangle A B C$, so $\angle A B M=30^{\circ}$, and $\angle M B C=\angle A B C-\angle A B M=15^{\circ}$.

8 Points A, B, and C lie on a circle centered at O with radius 10. Let the circumcenter of $\triangle A O C$ be P. If $A B=16$, find the minimum value of $P B$.

The circumcenter of a triangle is the intersection point of the three perpendicular bisectors of the sides.

Proposed by Bradley Guo and Stephen Chen.

Answer: $\frac{39}{5}$
Solution: Fix points A, B, and O, and let C vary along the circle. We know that P must lie on the perpendicular bisector of $A O$, and by choosing where C lies on the circle, we can choose where P lies on the perpendicular bisector of $A O$. All that remains is finding the distance from B to the perpendicular bisector of $A O$.

Let the midpoint of $A O$ be M, the midpoint of $A B$ be N, and the point at which the perpendicular bisector of $A O$ intersects $A B$ be Q. We know that $A N=8, A O=10$, so $N O=6$. Triangle $A M Q$ is similar to triangle $A N O$, and $A M=5$. Thus, $A Q=\frac{25}{4}$. Let the foot of the altitude from B to $M Q$ be D. Since triangle $B D Q$ is similar to triangle $A M Q$, we can finally get that $B D=\frac{39}{5}$.

