1 Point E is on side AB of rectangle ABCD. Find the area of triangle ECD divided by the area of rectangle ABCD.

Proposed by Nathan Cho.

Solution: Consider the height to the base CD of ECD. Since E is on AB, the height is simply the distance between AB and CD. Therefore, the area of the triangle is just half of the area of the rectangle.

2 Garb and Grunt have two rectangular pastures of area 30. Garb notices that his has a side length of 3, while Grunt's has a side length of 5. What's the positive difference between the perimeters of their pastures?

Proposed by Nathan Cho.

Answer: 4

Solution: We know that the area of a rectangle is the two side lengths multiplied together.

Garb's rectangle has area $30 = 3 \cdot x$, so x = 10, meaning that his rectangle has side lengths 3 and 10. The perimeter is then 3 + 3 + 10 + 10 = 26.

For Grunt, we get $30 = 5 \cdot y$, so y = 6, and his rectangle has perimeter 5 + 5 + 6 + 6 = 22.

The answer is 26 - 22 = 4.

3 A scalene triangle (the 3 side lengths are all different) has integer angle measures (in degrees). What is the largest possible difference between two angles in the triangle?

Proposed by Bradley Guo.

Answer: 176

Solution: A scalene triangle has three different angles all summing to 180. The largest possible difference between two of these angles happens in a triangle with angles 1° , 2° , and 177° . The difference is 177 - 1 = 176.

4 Let point *E* be on side \overline{AB} of square *ABCD* with side length 2. Given DE = BC + BE, find *BE*.

Proposed by Bradley Guo.

Answer: $\left|\frac{1}{2}\right|$

Solution: Let BE = x. Then AE = 2-x and DE = 2+x. Applying the Pythagorean Theorem gives

$$2^2 + (2 - x)^2 = (2 + x)^2$$

Expanding and solving for x gives $x = \frac{1}{2}$

5 The two diagonals of rectangle ABCD meet at point E. If $\angle AEB = 2 \angle BEC$, and BC = 1, find the area of rectangle ABCD.

Proposed by Bradley Guo.

Answer: $\sqrt{3}$

Solution: We know that $\angle AEB + \angle BEC = 180^{\circ}$ because *E* lies on *AC*, so then $3\angle BEC = 180^{\circ}$ and $\angle BEC = 60^{\circ}$. Therefore, $\angle DBC = 60^{\circ}$, so since $\angle DCB = 90^{\circ}$ we know that *DBC* is a 30-60-90 triangle, and *DC* = $\sqrt{3}$. Therefore, the area is $DC \cdot BC = \sqrt{3}$.

6 In $\triangle ABC$, let D be the foot of the altitude from A to BC. Additionally, let X be the intersection of the angle bisector of $\angle ACB$ and AD. If BD = AC = 2AX = 6, find the area of ABC.

Proposed by Nathan Cho.

Solution: We know by the angle bisector theorem in triangle ACD that $\frac{DC}{DX} = \frac{AC}{AX} = 2$. Letting DX = x, then DC = 2x. By Pythagorean Theorem in triangle ADC, we have $(2x)^2 + (3+y)^2 = 36$. We can solve this to find that $x = \frac{9}{5}$. Then, the area of triangle ABC is $\frac{AD \cdot BC}{2} = \frac{(3+y)(6+2x)}{2} = \frac{576}{25}$.

7 Let $\triangle ABC$ have $\angle ABC = 40^{\circ}$. Let D and E be on \overline{AB} and \overline{AC} respectively such that \overline{DE} is parallel to \overline{BC} , and the circle passing through points D, E, and C is tangent to \overline{AB} . If the center of the circle is O, find $\angle DOE$.

Proposed by Bradley Guo.

Answer: 80°

Solution: We know that because $DE \parallel BC$, then $\angle ADE = \angle ABC = 40^{\circ}$. Because the circle through DEC is tangent to \overline{AB} , then the measure for arc DE equals $\angle ADE = 40^{\circ}$. Then, since $\angle DOE$ is the central angle corresponding to the arc, then the angle measure is twice the arc measure and we get 80° .

8 Consider $\triangle ABC$ with AB = 3, BC = 4, and AC = 5. Let D be a point of AC other than A for which BD = 3, and E be a point on BC such that $\angle BDE = 90^{\circ}$. Find EC.

Proposed by Bradley Guo.

Answer: $\left|\frac{7}{8}\right|$

Solution: We can angle chase to find

 $\angle C = 90 - \angle A = 90 - \angle ADB = 180 - \angle BDE - \angle ADB = \angle EDC$

which implies that $\triangle DEC$ is iscoceles. Let ED = EC = x. Since BE = 4 - x, BD = 3, and $\angle BDE = 90$, we can apply Pythagorean Theorem on $\triangle BDE$:

$$3^2 + x^2 = (4 - x)^2$$

Expanding and solving for x gives $x = \frac{7}{8}$.