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1 Chris has a bag with 4 black socks and 6 red socks (so there are 10 socks in total).
Timothy reaches into the bag and grabs two socks without replacement. Find the
probability that he will not grab two red socks.

Proposed by Chris Tong

Solution. 2
3

The probability that the first sock is red is 3
5 and the probability that the second is red

is 5
9 . Therefore, the probability that he does not get a pair of reds is 1− 3

5 ·
5
9 = 2

3

2 Daniel, Clarence, and Matthew split a $20.20 dinner bill so that Daniel pays half of what
Clarence pays. If Daniel pays $6.06, what is the ratio of Clarence’s pay to Matthew’s
pay?

Proposed by Henry Ren

Solution. 6

Since Daniel paid $6.06, Clarence must have paid double that, or $12.12. In total, the
two paid $18.18, which means that Matthew must have paid the remaining $2.02. The
answer is thus 6 .

3 Square ABCD has a side length of 1. Point E lies on the interior of ABCD, and is on
the line ←→AC such that the length of AE is 1. Find the shortest distance from point E
to a side of square ABCD.

Proposed by Chris Tong

Solution. 2−
√

2
2

Point E is equidistant to sides BC and CD, the sides which it is closest to. Draw the
perpendicular, and use the properties of 45− 45− 90 triangles to find the desired length
to be

√
2−1√

2 = 2−
√

2
2 .

4 Ken has a six sided die. He rolls the die, and if the result is not even, he rolls the die
one more time. Find the probability that he ends up with an even number.

Proposed by Gabriel Wu

Solution. 3
4

He has a 1
2 chance of rolling a even on the first roll, and a 1

4 chance of rolling a even on
the second. Thus, the answer is 1

2 + 1
4 .



5 Fuzzy draws a segment of positive length in a plane. How many locations can Fuzzy
place another point in the same plane to form a non-degenerate isosceles right triangle
with vertices consisting of his new point and the endpoints of the segment?

Proposed by Timothy Qian

Solution. 6

We perform casework on whether the side is a leg or hypotenuse of the isosceles right
triangle. If it is a leg, then there are 4 possibilities for the other point. If it is a
hypotenuse, there are 2 possibilities. Thus the total is 2 + 4 = 6 .

6 Given that
√

10 ≈ 3.16227766, find the largest integer n such that n2 ≤ 10, 000, 000.

Proposed by Jacob Stavrianos

Solution. 3162

The condition is equivalent to n ≤ 1000 ·
√

10, which is just shifting the decimal place
on
√

10 by 3 places, yielding n = 3162.

7 Let S = {1, 2, 3, ..., 12}. How many subsets of S, excluding the empty set, have an even
sum but not an even product?

Proposed by Gabriel Wu

Solution. 31

If a subset of S does not have an even product, it means that it does not contain
any even values. To have an even sum, the subset must then have an even amount of
odd elements.There are 6 possible odd elements: 1, 3, 5, 7, 9, 11. Thus, the answer is(

6
2

)
+
(

6
4

)
+
(

6
6

)
= 31.

8 Let 4ABC be inscribed in circle O with ∠ABC = 36◦. D and E are on the circle such
that AD and CE are diameters of circle O. List all possible positive values of ∠DBE
in degrees in order from least to greatest.

Proposed by Ambrose Yang

Solution. 36◦, 144◦

Let O be the center of the circle. We have that ∠AOC = 36◦ · 2 = 72◦. Since D,E are
opposite of A,C, respectively, we have that ∠DOE = ∠AOC = 72◦. Thus ∠DBE is
either equal to 36◦ or 180◦ − 36◦ = 144◦, depending on whether B is on minor or major
arc >DE.

9 Consider a regular pentagon ABCDE, and let the intersection of diagonals CA and
EB be F . Find ∠AFB.

Proposed by Justin Chen



Solution. 108◦

Because ABCDE is regular, EB is parallel to DC and AC is parallel to ED. Therefore
EDCF is a parallelogram. ∠EFC = 108◦, so ∠AFB = ∠EFC = 108◦ by equal angles
of a parallelogram.

10 Mr. Squash bought a large parking lot in Utah, which has an area of 600 square meters.
A car needs 6 square meters of parking space while a bus needs 30 square meters of
parking space. Mr. Squash charges $2.50 per car and $7.50 per bus, but Mr. Squash
can only handle at most 60 vehicles at a time. Find the ordered pair (a, b) where a is
the number of cars and b is the number of buses that maximizes the amount of money
Mr. Squash makes.

Proposed by Nathan Cho

Solution. (50, 10)

Setting up a system of inequalities, we find that we want to maximize 2.50 · a+ 7.50 · b
under the constraint that a, b are nonnegative integers, and 6a+ 30b ≤ 600, a+ b ≤ 60.
Since we only care about what a and b are, we can think of this as maximizing a+ 3b.
We simplify the constraints to a + b ≤ 60, a + 5b ≤ 100. Let k = a + 3b. The
equations can be rewritten as k − 2b ≤ 60 ⇒ k ≤ b + 60, and k ≤ 100 − 3b. So we
have k ≤ min(b+ 60, 100− 3b). Since the first argument is increasing while the second
argument is decreasing, the maximum possible value of the right hand side is achieved
when the two arguments are equal. This happens at b = 10. This maximum value of k
is achievable by setting a = 50, which gives us our desired pair.

11 There are 8 distinct points on a plane, where no three are collinear. An ant starts at
one of the points, then walks in a straight line to each one of the other points, visiting
each point exactly once and stopping at the final point. This creates a trail of 7 line
segments. What is the maximum number of times the ant can cross its own path as it
walks?

Proposed by Gabriel Wu

Solution. 15

The first two segments cannot cause any intersections. After that, each segment can
intersect every previous segment, besides the one that comes just before it. The ith
segment can thus create i−2 intersections. The answer is 0+0+1+2+3+4+5 = 15.

12 Find the number of ways to partition S = {1, 2, 3, . . . , 2020} into two disjoint sets A
and B with A ∪ B = S so that if you choose an element a from A and an element b
from B, a+ b is never a multiple of 20. A or B can be the empty set, and the order of
A and B doesn’t matter. In other words, the pair of sets (A,B) is indistinguishable
from the pair of sets (B,A).

Proposed by Timothy Qian



Solution. 1024

Consider the residues mod 20. There are 20 of them. x, 20− x (mod 20) must be in
the same group. Thus we get 9 + 2 = 11 groups of residues to split into two sets. Thus
the answer is 210, as we don’t care about the order of the sets.

13 How many ordered pairs of positive integers (a, b) are there such that a right triangle
with legs of length a, b has an area of p, where p is a prime number less than 100?

Proposed by Joshua Hsieh

Solution. 99

The right triangle must have a side with length 1 or 2. So for each choice of p, there are
2 such triangles. Since there are 25 primes less than 100, we initially have an answer
of 2 · 50, where the 2 is to account for the fact that (a, b) are ordered. However, we
subtract 1 since we overcount (2, 2) twice, so our answer is 99.

14 Mr. Schwartz has been hired to paint a row of 7 houses. Each house must be painted
red, blue, or green. However, to make it aesthetically pleasing, he doesn’t want any
three consecutive houses to be the same color. Find the number of ways he can fulfill
his task.

Proposed by Daniel Monroe

Solution. 1344

Let f(n) be the number of ways Mr. Schwartz can paint a row of n houses with the
given restrictions. Then f(1) = 3 and f(2) = 9. For all n ≥ 3, the last two houses
can either be the same color or different colors. If they are different colors, there are
2f(n− 1) ways to color the houses because for each coloring of n− 1 houses, the next
house can be either of the two colors that the second to last house isn’t. If the last two
houses are the same color, then they must be a different color than the third to last
house (otherwise the last three houses would all be the same color). This contributes
2f(n− 2) ways. Thus, f(n) = 2f(n− 1) + 2f(n− 2). Applying this recursive function
gets us f(3) = 24, f(4) = 66, f(5) = 180, f(6) = 492, f(7) = 1344 .

15 Bread draws a circle. He then selects four random distinct points on the circumference
of the circle to form a convex quadrilateral. Kwu comes by and randomly chooses
another 3 distinct points (none of which are the same as Bread’s four points) on the
circle to form a triangle. Find the probability that Kwu’s triangle does not intersect
Bread’s quadrilateral, where two polygons intersect if they have at least one pair of
sides intersecting.

Proposed by Nathan Cho



Solution. 1
5

We note that locations of the points themselves don’t affect the intersection between
the quadrilateral and the triangle, only their relative ordering around the circle does.
Note that the triangle and quadrilateral do not intersect if and only if the three points
of the triangle are placed consecutively around the circle. In other words, all three
vertices of the triangle fall between two adjacent vertices of the quadrilateral. If we
fix one of the points of the quadrilateral, we can reduce the problem to finding the
probability that a random permutations of the string "QQQTTT" has three T’s in a
row. Out of all

(
6
3

)
permutations, only 4 work. Thus, the probability that the triangle

and quadrilateral do not intersect is 4
(6

3)
= 1

5 .

16 What is the largest integer n with no repeated digits that is relatively prime to 6?
Note that two numbers are considered relatively prime if they share no common factors
besides 1.

Proposed by Jacob Stavrianos

Solution. 987654301

The condition is equivalent to neither 2|n nor 3|n.

We initially note that n can contain at most every digit exactly once. However, applying
the rule for divisibility by 3, we find that 0 + 1 + 2 + 3 + 4 + 5 + 6 + 7 + 8 + 9 = 45 is
divisible by 3, so n must be missing a digit. Also, n cannot end in a 0 or 2, otherwise 2
would divide n.

To maximize n, we claim that there exists a 9-digit n starting with 9876543. The
remaining numbers are 2, 1, 0, of which one must not be included. We see that n must
end in 1 for it to be odd, and if 0 was excluded then 3|n. Thus, 2 is excluded, and
n = 987654301 .

17 4KWU is an equilateral triangle with side length 12. Point P lies on minor arc >WU
of the circumcircle of 4KWU . If KP = 13, find the length of the altitude from P onto
WU .

Proposed by Bradley Guo

Solution. 25
√

3
24

Let X be the point opposite of point K on the circle (KWU). We note that the
circumradius of an equilateral triangle with side length 12 is 12√

3 = 4
√

3, so KX = 8
√

3
since it is a diameter. Let the foot of the altitude from P to KX be Y , and let the
intersection of KX and WU be Z. Note that Z is the midpoint of WU by symmetry.
Note that KP ⊥ WU . So we simply want to find Y Z. We have that KZ = 12

√
3

2 = 6
√

3
because it is the height of an equilateral triangle. We have that 4KPX is right, so



PX =
√

23 by the Pythagorean Theorem. Thus PY =
√

23·13
8
√

3 since it is the height
of 4PKX. By Pythagorean theorem, XY = 23

√
3

24 . Thus we have our final answer is
Y Z = 8

√
3−KZ −XY = 25

√
3

24 .

18 Let w, x, y, z be integers from 0 to 3 inclusive. Find the number of ordered quadruples
of (w, x, y, z) such that 5x2 + 5y2 + 5z2 − 6wx− 6wy − 6wz is divisible by 4.

Proposed by Timothy Qian

Solution. 32

You can complete the square after taking (mod 4) to get that (x− w)2 + (y − w)2 +
(z − w)2 ≡ 3w2 (mod 4). So we can do casework on the parities of w, x, y, z. If we
consider the case of w even, we clearly must have x, y, z all be even, and if we consider
the case of w odd, we clearly must have x, y, z all be even. Thus there are 4 · 23 = 32
quadruples.

19 In a regular hexagon ABCDEF of side length 8 and center K, points W and U are
chosen on AB and CD respectively such that KW = 7 and ∠WKU = 120◦. Find the
area of pentagon WBCUK.

Proposed by Bradley Guo

Solution. 32
√

3

Note that since the hexagon satisfies 120◦ rotational symmetry about K, pentagon
WBCUK rotated three times about K, each time by 120◦, forms the complete hexagon
ABCDEF . Thus, the area is just 1

3 the area of hexagon ABCDEF , which we can
calculate. Therefore, the answer is 32

√
3.

20 Sam colors each tile in a 4 by 4 grid white or black. A coloring is called rotationally
symmetric if the grid can be rotated 90, 180, or 270 degrees to achieve the same pattern.
Two colorings are called rotationally distinct if neither can be rotated to match the
other. How many rotationally distinct ways are there for Sam to color the grid such
that the colorings are not rotationally symmetric?

Proposed by Gabriel Wu

Solution. 16320

The total number of ways for Sam to color the grid is 216. Among these ways, 28 are
rotationally symmetric. Among the remaining ways, each distinct way is counted 4
times. Thus the answer is 216−28

4 .



21 Matthew Casertano and Fox Chyatte make a series of bets. In each bet, Matthew sets
the stake (the amount he wins or loses) at half his current amount of money. He has an
equal chance of winning and losing each bet. If he starts with $256, find the probability
that after 8 bets, he will have at least $50.

Proposed by Jeffrey Tong

Solution. 163
256

"Each time Matthew wins a bet, his balance will be multiplied by 3
2 , and each time he

loses, it will be multiplied by 1
2 . Therefore, if he wins n bets, his final balance will be

256 ·
(

3
2

)n
·
(

1
2

)8−n
, which simplifies to 3n. Since we want 3n ≥ 50, we need n ≥ 4.

To find the probability, we now divide the total number of ways to achieve 4 or more
wins by the total number of possible outcomes, 28. The number of ways to get exactly
k wins is

(
8
k

)
, so this gives (8

4)+(8
5)+(8

6)+(8
7)+(8

8)
28 = 70+56+28+8+1

256 = 163
256 .

22 Find the product of all positive real solutions to the equation x−x + x
1
x = 2021

2020

Proposed by Gabriel Wu

Solution. 1

Turn the LHS into x 1
x + ( 1

x
)x. Then, you know that if x is a solution, then 1/x must also

be a solution because plugging in 1
x
gets you the same expression. Thus, the product of

all positive solutions that work is 1.

23 Let ABCD be a cyclic quadrilateral so that AC ⊥ BD. Let E be the intersection of
AC and BD, and let F be the foot of the altitude from E to AB. Let EF intersect CD
at G, and let the foot of the perpendiculars from G to AC and BD be H, I respectively.
If AB =

√
5, BC =

√
10, CD = 3

√
5, DA = 2

√
10, find the length of HI.

Proposed by Timothy Qian

Solution. 3
√

5
2

We evidently have that 4AEB and 4CED are both right triangles and similar by
cyclic quadrilaterals. Let a = ∠BAE. We thus have ∠BEF = a. However, we also have
∠EDC = a by the similar triangles, so we have that ∠BEF = ∠DEG = ∠CDE = a.
This implies that 4DGE is isosceles with DG = GE. We can similarly find GE = GC.
This shows that G is the midpoint of DC. Note that EHGI is a rectangle since we have
three of its angles are right angles. Thus we have HI = EG = DG = DC

2 = 3
√

5
2 .

24 Nashan randomly chooses 6 positive integers a, b, c, d, e, f . Find the probability that
2a + 2b + 2c + 2d + 2e + 2f is divisible by 5.

Proposed by Bradley Guo



Solution. 205
1024

For any integer n, if n ≡ 0 mod 4, then 2n ≡ 1 mod 5, if n ≡ 1 mod 4, then 2n ≡ 2
mod 5, if n ≡ 2 mod 4, then 2n ≡ 4 mod 5, if n ≡ 3 mod 4, then 2n ≡ 3 mod 5.
Thus, 2a, 2b, 2c, 2d can each be 1, 2, 3 or 4 mod 5 with equal probability. We can
establish a recurrence: p(n) = (1− p(n− 1)) · 1

4 where p(n) is the probability that the
sum of 2 taken to the power of n random integers is divisible by 5. We are looking for

p(6) and p(1) = 0, so the answer is 205
1024 .

25 Let bxc denote the greatest integer less than or equal to x. Find the sum of all positive
integer solutions to ⌊

n3

27

⌋
−
⌊
n

3

⌋3
= 10.

Proposed by Jason Hsu

Solution. 18

Let x = 3a + b for nonnegative integers a, b such that 0 ≤ b ≤ 2. We have that
this expression can be rewritten as

⌊
a3 + a2b+ 9ab2+1

27

⌋
− a3 = 10. This means that⌊

a2b+ 9ab2+1
27

⌋
= 10. We can now perform casework on b.

Case 1: b = 0. We have that
⌊

1
27

⌋
= 10, which is false.

Case 2: b = 1. We have
⌊
a2 + 9a+1

27

⌋
= 10. a has to be less than or equal to 3, and the

only value that works is a = 3. Thus we get a solution of n = 10.

Case 3: b = 2. We have
⌊
2a2 + 36a+1

27

⌋
= 10. We have a ≤ 2, and the only solution

that works is a = 2. Thus we another solution of n = 8.

These are our only solutions, so our solution set is 8, 10⇒ 18.

26 Let 4MBT be a triangle with MB = 4 and MT = 7. Furthermore, let circle ω be a
circle with center O which is tangent to MB at B and MT at some point on segment
MT . Given OM = 6 and ω intersects BT at I 6= B, find the length of TI.

Proposed by Chad Yu

Solution. 27
√

641
641

Let ω be tangent to MT at B′. We know that MB = MB′ = 4, so B’T = 3. Also, we
know that OM bisects ∠BMT , so cos∠BMT = 2 cos2(∠BMO)−1 = 2·

(
2
3

)2
−1 = −1

9 .
Thus we have that BT 2 = MB2 + MT 2 − 2 ·MB ·MT · cos∠BMT ⇒ BT =

√
641
3 .

Lastly, by Power of a Point, we have that TI = B′T 2

BT
= 27√

641 .



27 The perfect square game is played as follows: player 1 says a positive integer, then
player 2 says a strictly smaller positive integer, and so on. The game ends when someone
says 1; that player wins if and only if the sum of all numbers said is a perfect square.
What is the sum of all n such that, if player 1 starts by saying n, player 1 has a winning
strategy? A winning strategy for player 1 is a rule player 1 can follow to win, regardless
of what player 2 does. If player 1 wins, player 2 must lose, and vice versa. Both players
play optimally.

Proposed by Jacob Stavrianos

Solution. 9

We note n = 1 and n = 2 are wins for player 1, and consider the case where n > 2:

For player 2, consider the strategy of “say 2 on my first move”. Player 1 is then forced
to say 1 and wins iff n+ 3 is a perfect square. Thus, n+ 3 must be a perfect square for
player 1 to have a winning strategy.

Now, consider the following strategy for player 2: “say the smallest available number
that brings the sum to 3 minus a perfect square. Then, player 1 can’t say 2, and I’ll
say 2 on my next turn.” This strategy wins for player 2 whenever any such number is
available. Setting n+ 3 = a2, we check when such a number exists:

((a+ 1)2 − 3)− (a2 − 3) < a2 − 3

2a+ 1 < a2 − 3

a2 > 2(a+ 2)

We manually verify that this is true for all a > 3, so player 1’s strategy is winning for
a ≤ 3. The answer is thus 1 + 2 + 6 = 9 .

28 Consider the system of equations

a+ 2b+ 3c+ . . .+ 26z = 2020

b+ 2c+ 3d+ . . .+ 26a = 2019
...

y + 2z + 3a+ . . .+ 26x = 1996

z + 2a+ 3b+ . . .+ 26y = 1995

where each equation is a rearrangement of the first equation with the variables cycling
and the coefficients staying in place. Find the value of

z + 2y + 3x+ · · ·+ 26a.

Proposed by Joshua Hsieh



Solution. 1995

Adding the first expression and our desired expression, we obtain

27(a+ b+ c+ . . .+ z)

Summing the given equations, we have

26(27)
2 (a+ b+ c+ . . .+ z) = 26(2020 + 1995)

2

which means that a+ b+ c+ . . .+ z = 4015
27 .

Thus the desired expression is equal to 27 ·
(

4015
27

)
− 2020 = 1995

29 The center of circle ω1 of radius 6 lies on circle ω2 of radius 6. The circles intersect at
points K and W . Let point U lie on the major arc>KW of ω2, and point I be the center
of the largest circle that can be inscribed in 4KWU . If KI +WI = 11, find KI ·WI.

Proposed by Bradley Guo

Solution. 13

We can easily find that KW = 6
√

3 and ∠KUW = 60◦ using equilateral triangles.
Since I lies on the angle bisector of ∠KUW , ∠KIW = 120◦. Using Law of Cosines on
4KIW ,

KI2 +WI2 +KI ·WI = 108

We are given that KI +WI = 11, so

KI2 +WI2 + 2 ·WI ·KI = 121

Thus,
KI ·WI = 13

30 Let the number of ways for a rook to return to its original square on a 4× 4 chessboard
in 8 moves if it starts on a corner be k. Find the number of positive integers that are
divisors of k. A "move" counts as shifting the rook by a positive number of squares on
the board along a row or column. Note that the rook may return back to its original
square during an intermediate step within its 8-move path.

Proposed by Bradley Guo



Solution. 36

Let wu be the number of ways for a rook to return to the corner after u moves. After
u− 2 moves, the rook will either be at it’s original square, along the row and column of
the original square, or anywhere else. The number of ways for the first case to occur is
wu−2, the number of ways for the second to occur is wu−1, and the number of ways for
the third to occur is 6n−2 − wu−1 − wu−2. The rook has 6 ways to return after 2 more
moves for the first case, 2 way to return for the second, and 2 ways to return for the
third. Thus, we find that

wu = 2 · 6n−2 + 4 · wu−2

We initially have w1 = 0, w2 = 6. If we calculate w8, we find that

w8 = 2 · 66 + 8 · 64 + 32 · 62 + 64 · 6 = 6 · 64 · (35 + 33 + 3 + 1) = 6 · 64 · 274 = 28 · 3 · 137

This thus has 36 factors.

31 Consider the infinite sequence {ai} that extends the pattern

1, 1, 2, 1, 2, 3, 1, 2, 3, 4, 1, 2, 3, 4, 5, . . .

Formally, ai = i−T (i) for all i ≥ 1, where T (i) represents the largest triangular number
less than i (triangle numbers are integers of the form k(k+1)

2 for some nonnegative integer
k). Find the number of indices i such that ai = ai+2020.

Proposed by Gabriel Wu

Solution. 2702

Let i be called a peak if ai+1 = 1. Notice that whenever a(i) = a(j), j− i can be written
as the sum of the values of the peaks between i and j, which must be consecutive
positive integers. This can be found through intuition and easily shown. In this case, we
want to write 2020 = x+ (x+ 1) + (x+ 2) + · · ·+ (x+ n). Given such a representation,
ai can be any number from 1 to x, and n has to be a nonnegative integer. So we
have reduced the problem to finding the sum of all x over all pairs of (x, n) that have
2020 = x+ (x+ 1) + (x+ 2) + · · ·+ (x+ n).

If n is even, then the average of x, x+ 1, . . . , x+ n must be an integer, so the number
of terms must be a factor of 2020 that allows x to be a positive integer. Checking these
cases gets us (x, n) = (402, 4) or (2020, 0). If n is odd, then the average of the terms
is a fraction with a denominator of 2. Thus, the number of terms is a multiple of 8.
Checking some more cases, the only solutions that work are (x, n) = (249, 7) or (31, 39).
The sum of all valid x is 402 + 2020 + 249 + 31 = 2702.



32 Let the square decomposition of a number be defined as the sequence of numbers
given by the following algorithm. Given a positive integer n, add the largest possible
perfect square that is less than or equal to n to a sequence, and then subtract that
number from n. Repeat as many times as necessary until your current n is 0. So for
example, the square decomposition of 60 would be 49, 9, 1, 1. Define the size of a square
decomposition to be the number of numbers in the sequence. Say that the maximal
size of a square decomposition of a number in the range [1, 2020] is m. Find the largest
number in the range [1, 2020] that has a square decomposition of size m.

Proposed by Timothy Qian

Solution. 2015

Let f(n) be the function that outputs the length of the square decomposition of a n,
and let s(n) output the largest square less than or equal to n. Then it’s easy to see
that f(n) = f(n− s(n)) + 1. Note that the smallest square greater than 2020 is 2025.
Thus m can be at most 1 + f(x) for some x in the range [0, 2024 − 442]. Thus, this
gives us an easy way to find what m is, and after applying this several times, we can
deduce m to be 6. Now we want the largest number with a square decomposition of
size 6. Evidently we want it to be in the range of [442, 2020]. This reduces to finding
the largest number in the range of [0, 84] with a square decomposition of size 5. We
can repeat this reduction process to eventually extract our answer of 2015.

33 Circle ω1 with center K of radius 4 and circle ω2 of radius 6 intersect at points W
and U . If the incenter of 4KWU lies on circle ω2, find the length of WU . (Note:
The incenter of a triangle is the intersection of the angle bisectors of the angles of the
triangle)

Proposed by Bradley Guo

Solution. 24
√

13
13

Let I be the incenter of 4KWU . Let x = ∠WKU . By angle chasing (or properties of
the incenter), we know that ∠WIU = 90◦ + x

2 . Let O be the center of ω2. By inscribed
angles, we have that ∠WOU = 180◦ − x. However, this implies that KWOU is cyclic.
Since this quadrilateral is symmetric about KO, we must have KO is a diameter of
the circumcircle of KWOU , so we have ∠KWO = 90◦. Thus we have that WU is two
times the length of the altitude from W to KO. This is easy to calculate since 4KWO

is a right triangle with KW = 4,WO = 6, and we get 24
√

13
13 as our answer.

34 Let a set S of n points be called cool if:

• All points lie in a plane

• No three points are collinear



• There exists a triangle with three distinct vertices in S such that the triangle
contains another point in S strictly inside it

Define g(S) for a cool set S to be the sum of the number of points strictly inside each
triangle with three distinct vertices in S. Let f(n) be the minimal possible value of
g(S) across all cool sets of size n. Find

f(4) + · · ·+ f(2020) (mod 1000)

Proposed by Timothy Qian

Solution. 153

We find the explicit formula for f(n). First we will solve this for the case of a convex
n−1 gon and 1 point inside. Call a triangulation from a vertex the triangulation formed
by drawing all diagonals from that vertex. Across all vertex triangulations of the n− 1
gon, there is a triangle in that triangulation that contains that point. However, each
pair of vertex triangulations can only overlap at most one triangle, namely a triangle
that has two sides on the n− 1 gon. At most two of these triangles can contain the one
point inside, thus we have our minimal bound of n− 3. It is easily verifiable that this
is achievable.

Now we consider the general case. Consider the convex hull of the n points, say there are
a on it, and b on the inside. A very rough lower bound is (a−2) · b under the constraints
a ≥ 3, b ≥ 1, a + b = n by using the simpler case before. The minimum is evidently
achieved at n−3, where a = n−1, b = 1. This achieved by the construction in the smipler
case. Thus our f(n) = n−3, and our answer is 1+2+ · · ·+2017 = 2035153⇒ 153 .

35 Tim has a multiset of positive integers. Let ci be the number of occurrences of numbers
that are at least i in the multiset. Let m be the maximum element of the multiset.
Tim calls a multiset spicy if c1, . . . , cm is a sequence of strictly decreasing powers of 3.
Tim calls the hotness of a spicy multiset the sum of its elements. Find the sum of the
hotness of all spicy multisets that satisfy c1 = 32020. Give your answer (mod 1000).
(Note: a multiset is an unordered set of numbers that can have repeats)

Proposed by Timothy Qian

Solution. 576

Let the sorted elements of the multiset be a1, . . . , an. Draw a dot plot, where in the
ith column from the left, we draw ai vertical dots. Then the hotness of a spicy set is
the number of dots drawn. However, the condition implies that each horizontal row
has a number of dots equivalent to a power of 3. Moreover, each row has a distinct
power of 3 number of dots, and this value decreases from 32020 going upwards. Thus a
characterization of the possible hotness of any spicy set are the numbers with only 1’s
and 0’s in their base 3 representation if they have exactly 2021 digits. Let n = 2020 for



simplicity. We can compute this for each bit in the ternary representation across all
hotness values to be

3n · 2n + (1 + 3 + · · ·+ 3n−1) · 2n−1 = 45 · 62018 − 22018

The answer can thus be computed to be 576.

36 ABCD is a rectangle AB = 5
√

3, AD = 30. Extend BC past C and construct point
P on this extension such that ∠APD = 60◦. Point H is on AP such that DH ⊥ AP .
Find the length of DH.

Proposed by Kevin Wu

Solution. 15
√

6− 15
√

2
2

Reflect D over C to point X. We have XD = 10
√

3, DA = 30. Note that 30 =
10
√

3 ·
√

3, and since ∠D = 90◦, we have that 4DAX is a 30◦ − 60◦ − 90◦ triangle,
with ∠DXA = 60◦. By the inscribed angles theorem, this implies that DAXP is cyclic
since we have ∠DXA = ∠APD. Note that we also have that PD = PX by symmetry,
thus AP is an angle bisector of ∠DAX. We have that ∠DAX = 30◦, so ∠PAD = 15◦.

Thus we have that DH = DA · sin 15◦ = 15
√

6− 15
√

2
2

37 Fuzzy likes isosceles trapezoids. He can choose lengths from 1, 2, . . . , 8, where he may
choose any amount of each length. He takes a multiset of three integers from 1, . . . , 8.
From this multiset, one length will become a base length, one will become a diagonal
length, and one will become a leg length. He uses each element as either a diagonal,
leg, or base length exactly once. Fuzzy is happy if he can use these lengths to make
an isosceles trapezoid such that the undecided base has nonzero rational length. How
many multiset choices can he make? (Multisets are unordered)

Proposed by Timothy Qian

Solution. 62

Let Fuzzy choose the multiset a, b, c, where these are the leg, diagonal, and base length
respectively. Note that a, b, c must be the side lengths of a triangle, as the diagonal,
leg length, and base forms a triangle. The isoceles trapezoid is cyclic, so we can apply
Ptolemy’s theorem to get b2 = c2 + ad, where d is the final base length. d will always be
rational, so we can ignore the rational condition now. Given that a, b, c are the sides of
a triangle, the only way we could have a, b, c not be able to form an isosceles trapezoid
with rational bases in the matter described is if a = b = c. Thus, we simply want to
count the number of noncongruent triangles with integer side lengths of at most 8, and
subtract out 8 for the 8 equilateral triangles. This yields an answer of 70− 8 = 62.



38 Consider4ABC with circumcenter O and ∠ABC obtuse. Construct A′ as the reflection
of A over O, and let P be the intersection of A′B and AC. Let P ′ be the intersection
of the circumcircle of (OPA) with AB. Given that the circumdiameter of 4ABC is
25, AB = 7, and BC = 15, find the length of PP ′.

Proposed by Kevin Wu

Solution. 5
√

37
4

Note that AA′ = 25 since it is a circumdiameter. By properties of diameters, 4AA′B
is right, so we have by the Pythagorean Theorem that BA′ = 24. Let x = A′C. We
apply Ptolemy’s theorem on ABCA′ to get that 7x+ 15 · 25 =

√
625− x2 · 24. You can

solve the resulting quadratic equation (it simplifies nicely) to get x = 15 (we discard
the negative solution). However, now note that BC = CA′. This implies that AC is
the angle bisector of ∠BAA′. Thus we have that since AP ′PO is cyclic, PP ′ = PO.
Note that

(
25
2

)2
− PO2 = Pow(P ), where Pow is the function for power of a point.

We can compute AC = 20 by the Pythagorean Theorem on right triangle 4ACA′.
Now, we want to find AP . Let x = BP . Then by the Angle Bisector Theorem applied
on 4A′AB, we have that 7

x
= 25

24−x . This yields x = 21
4 . Applying the Pythagorean

Theorem on 4ABP yields AP = 45
4 , and subtraction yields PC = 35

4 . Thus, we can
compute the power of P , and we get that PO2 = 625

4 −
35
4 ·

45
4 , which yields an answer

of PP ′ = PO = 5
√

37
4 .

39 Let f(x) =
√

4x2 − 4x4. Let A be the number of real numbers x that satisfy

f(f(f(. . . f(x) . . . ))) = x,

where the function f is applied to x 2020 times. Compute A (mod 1000).

Proposed by Timothy Qian

Solution. 576

Note that f(x) = |2x|
√

1− x2. The domain of this function is −1 ≤ x ≤ 1; thus we
can let x = sin(θ) for some θ. We restrict θ ∈ [0, π2 ] since we only care about the value
of sin(θ). Then, f(x) = |2 cos(θ) sin(θ)| = | sin(2θ)|. Therefore, fn(x) = | sin (2nθ) |, so
we want to find the number of solutions to

| sin
(
22020θ

)
| = sin(θ)

Thus all that remains is to find the number of solutions to θ in the range [0, π2 ].
| sin (22020θ) | is simply a sine function reflected over the y-axis whenever the value
becomes negative. Thus, the period of | sin (22020θ) | is π

22020 , so there are 22019 periods
in the range [0, π2 ]. For each period of the function, sin(x) will intersect | sin (22020θ) |



exactly twice if x ∈ [0, π2 ], so the final answer is 2 · 22019 = 22020. To compute this
(mod 1000), we can use the Chinese Remainder Theorem to get a final answer of
576 .

40 Wu starts out with exactly one coin. Wu flips every coin he has at once after each year.
For each heads he flips, Wu receives a coin, and for every tails he flips, Wu loses a coin.
He will keep repeating this process each year until he has 0 coins, at which point he
will stop. The probability that Wu will stop after exactly five years can be expressed as
a
2b , where a, b are positive integers such that a is odd. Find a+ b.

Proposed by Bradley Guo

Solution. 71622400

Let an be the probability that Wu will stop after exactly n more years if he has 1 coin
at the beginning, and let bn be the probability that he will stop after exactly n years
if he has 2 coins at the beginning. We have a1 = 1

2 , b1 = 1
4 . Note that ak = 1

2bk−1
for k > 1. Now we find a way to calculate bk in terms of ai. The probability that
Wu will stop after at most k years if he starts with 2 coins is (a1 + · · ·+ ak)2. To see
this, we treat each coin independently, and each coin has a a1 + · · ·+ ak probability of
becoming 0 coins after at most k years. This yields the desired expression. Thus bk, or
the probability that Wu will stop after exactly k years if he starts with 2 coins is

bk(a1 + · · ·+ ak)2 − (a1 + · · ·+ ak−1)2 = a2
k + 2ak(a1 + · · ·+ ak−1)

ak+1 = ak

(
ak
2 + ak−1 + . . . a1

)
We can use this recurrence to get what we want, which is a5. This comes out to

1521 · (1521 + 9 · 29 + 213 + 215) + 31 = 71622400


