MBMT Geometry Round – Cantor

April 7, 2018

Full Name _____

Team Number _____

DO NOT BEGIN UNTIL YOU ARE INSTRUCTED TO DO SO.

This round consists of **8** questions. You will have **30** minutes to complete the round. Each question is *not* worth the same number of points. Questions answered correctly by fewer competitors will be weighted more heavily. Please write your answers in a reasonably simplified form.

1 A circle has circumference 6π . Find the area of this circle.

Proposed by Daniel Zhu

Solution. 9π

The circle has radius $\frac{6\pi}{2\pi} = 3$. Thus it has area $\pi \cdot 3^2 = 9\pi$.

2 Points A, B, and C are on a line such that AB = 6 and BC = 11. Find all possible values of AC.

Proposed by Daniel Zhu

Solution. |5, 17|

- Depending on the location of A, AC is either 11 + 6 = 17 or 11 6 = 5.
- **3** A trapezoid has area 84 and one base of length 5. If the height is 12, what is the length of the other base?

Proposed by Steven Qu

Solution. 9

If the length of the other base is b, then

$$\frac{1}{2} \cdot 12 \cdot (5+b) = 84.$$

Solving this yields b = 9

4 27 cubes of side length 1 are arranged to form a $3 \times 3 \times 3$ cube. If the corner $1 \times 1 \times 1$ cubes are removed, what fraction of the volume of the big cube is left?

Proposed by Chris Tong

There are 8 corners. If the 8 corner pieces are removed, then the resulting solid will contain 27 - 8 = 19 1 by 1 by 1 cubes. Therefore, the ratio of the volumes is $\boxed{\frac{19}{27}}$.

5 There is a 50-foot tall wall and a 300-foot tall guard tower 50 feet from the wall. What is the minimum *a* such that a flat "X" drawn on the ground *a* feet from the side of the wall opposite the guard tower is visible from the top of the guard tower?

Proposed by Shwetha Kunnam

Solution. 10

The tower and wall should line up at the maximum possible distance point; if the tower is further back, the "X" won't be visible, while if the tower is further forward, the distance will not be maximized. Set up similar triangles: one consists of the guard tower's top, base, and the "X" as vertices, while the other consists of the wall's top, base, and the "X" as vertices. Then, set up a proportion: (wall height)/(distance from wall to "X") = (tower height)/(distance from tower to "X") and substitute values to get 50/10 = 300/y. Solve to get y = 60, but remember that y = distance from tower to "X", so you subtract the distance from wall to "X" (10 feet) to get 50 feet

6 Steven's pizzeria makes pizzas in the shape of equilateral triangles. If a pizza with side length 8 inches will feed 2 people, how many people will a pizza of side length of 16 inches feed?

Proposed by Daniel Zhu

Solution. 8

The area scales up by a factor $2^2 = 4$. So the answer isl $2 \cdot 4 = 8$.

7 Consider rectangle ABCD, with 1 = AB < BC. The angle bisector of $\angle DAB$ intersects \overline{BC} at E and \overrightarrow{DC} at F. If FE = FD, find BC.

Proposed by Steven Qu

Solution.
$$2 + \sqrt{2}$$

Let $BC = x$.
 $FE = FA - EA = (x - 1)\sqrt{2}, FD = AD = x$.
Equating and solving yields $x = 2 + \sqrt{2}$.

8 $\triangle ABC$ is a right triangle with $\angle A = 90^{\circ}$. Square ADEF is drawn, with D on \overline{AB} , F on \overline{AC} , and E inside $\triangle ABC$. Point G is chosen on \overline{BC} such that EG is perpendicular to BC. Additionally, DE = EG. Given that $\angle C = 20^{\circ}$, find the measure of $\angle BEG$.

Proposed by Kevin A. Zhou

Solution. 55°

Since the angles of a triangle add up to 180° , the $\angle B = 70^{\circ}$. Notice that point E is the incenter of triangle ABC. This means that BE bisects $\angle ABC$, so the measure of $\angle GBE = 35^{\circ}$. Then, the measure of $\angle BEG = \boxed{55^{\circ}}$.